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Abstract
Porphyrin derivatives have found diverse applications due to their attractive photophysical and catalytic properties, but remain 
challenging to synthesize, particularly at scale. Porphyrin synthesis thus stands to benefit from the more controlled environ-
ment, opportunities for efficient optimization, and potential for scale-up available in flow. Here, we have transferred Lindsey 
porphyrin synthesis into flow, enabling controlled timing for oxidation and neutralization steps and real time monitoring 
of the reaction mixture with inline UV–Vis analysis. For tetraphenyl porphyrin (TPP), inline UV–Vis showed the presence 
of protonated TPP, formed due to residual acid. Thus, inline monitoring allowed optimization of the neutralization step to 
improve yield. Three further porphyrin substrates were produced in flow; in two cases, the yield from inline UV was signifi-
cantly higher than the yield from post-purification, identifying further yield losses that could be recovered by modifying the 
purification step. The workflow presented here can be adapted to multiple substrates to systematically optimise porphyrin 
yield, reducing the time needed to develop scalable routes to these valuable compounds.

Highlights

•	 Four meso-substituted porphyrins are formed via a continuous flow process incorporating condensation, oxidation, and 
neutralization.

•	 Inline UV–Vis is used to identify the formation of unwanted protonated porphyrin and to optimise the neutralization step.
•	 Monitoring yield via inline UV–Vis highlights yield losses during work-up, highlighting the need for improved purification 

processes for less stable substrates.
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Introduction

Porphyrins are heterocyclic macrocycles with remark-
able electro-, photo- and bio-chemical properties that have 
consequently found applications in many settings [1]. For 
example, porphyrins have been used as catalysts [2, 3], 
sensors [4], photo dynamic therapy agents [5], non-linear 

optic materials [6], in dye-sensitized solar cells [7], and in 
molecular electronics [8, 9]. In particular, tetra-aryl meso-
substituted porphyrins offer high chemical and thermal sta-
bility, can undergo various chemical transformations [10], 
and have been used as a versatile scaffold to achieve many 
functional architectures [11, 12].

Despite this promise, the use of porphyrins in real-world 
applications is limited by their challenging synthesis. Por-
phyrin synthesis is low-yielding, performs better at low con-
centrations, and needs to be optimized for each aldehyde 
substrate, requiring large amounts of solvent per mole of 
product [13]. Furthermore, synthesis of a given porphy-
rin can be subject to significant batch-to-batch variability, 
making optimization as well as subsequent purification both 
time- and resource-intensive.
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The synthesis of porphyrins has been extensively 
studied in order to overcome these challenges. Many 
approaches exist, e.g., tetramerization of mono-pyrrole 
or coupling of dipyrromethane units, the approach cho-
sen depending on the desired porphyrin scaffold and 
functionality [13, 14].

The synthesis of a meso-porphyrin was first reported in 
1935 by Rothemund: pyrrole, benzaldehyde, and pyridine 
were heated in a sealed tube reactor to obtain 10% yield 
of tetraphenyl porphyrin (TPP) [15, 16]. Later, Adler and 
Longo’s method of refluxing equimolar pyrrole and ben-
zaldehyde in propionic acid was developed, improving 
the yield of TPP to 20% [17, 18]. However, such harsh 
conditions are unsuitable for porphyrins with sensitive 
functional groups, and tar forms during the reaction that 
can be challenging to separate if the crystalline porphyrin 
does not precipitate out.

Later, Lindsey reacted pyrrole and benzaldehyde at 
room temperature in the presence of acid to reversibly 
form tetrapyrrolic porphyrinogen (Scheme 1) [19, 20]. To 
drive the reaction forward and break the equilibrium, por-
phyrinogen was irreversibly oxidised to porphyrin using 
2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) or p-chlora-
nil [21]. Lindsey examined 45 different acids to optimize 
this milder process, giving yields from 1–50% [19, 22]. 
Reaction concentration was found to be a key parameter; 
the optimal condition was established to be 0.01 M. Higher 
concentrations resulted in formation of polymer (polypyr-
rylmethanes); lower concentrations resulted in the formation 
of oligomers with insufficient repeating units for cyclization 
to porphyrin [13, 23].

The flexibility and broad scope of the Lindsay method has 
led to its wide-spread use for porphyrin synthesis, but sev-
eral challenges remain. Yields remain low due to the pres-
ence of multiple competing side reactions, as reported across 
a wide range of modifications to the method; i.e., the use of 
ionic liquids (15% yield) [24], Lewis acids (23% yield) [25], 
clay (20% yield), mixed solvent systems (45% yield) [26], 
microwave synthesis (24% yield) [27], and transition metal 
ion templating (44% yield) [28] all give yields that are simi-
lar to that reported for the original conditions (trifluoroacetic 
acid, typically 38%) [19].

Furthermore, these modified methods are generally 
reported for specific substrates; a strategy for systematic 
optimization that could be applied to any aldehyde sub-
strate is lacking. Reported optimal reaction times for differ-
ent substrates vary from seconds (e.g., for 1-anthracenecar-
baldehyde) [29] to hours (e.g., for 4-methoxybenzaldehyde) 
[22, 30]; it is challenging to identify the maximum yield of 
porphyrinogen over these timescales, and thus the optimal 
time for oxidation. Most methods still require high dilution, 
limiting scale up [10, 31]. Finally, if insufficient base is used, 

porphyrins are readily protonated, reducing yields via the 
formation of protonated porphyrin.

Reaction monitoring has been previously used to track 
the reversible chemistry of porphyrinogen formation and to 
determine the optimal time to oxidise the reaction [32]. How-
ever, reaction monitoring becomes difficult for rapid reactions 
under batch conditions and is time-consuming to perform 
accurately. As such, the synthesis of porphyrins seems an 
ideal candidate for study under continuous flow conditions.

Flow chemistry offers the advantage of controlling the 
reaction parameters, residence time, mixing, and heat and 
mass transfer, as well as providing safe handling of toxic 
reagents, multi-step synthesis via telescoping, automation 
opportunities, and routes to scale up [33–35]. Robust con-
trol of heat and mass transfer could enable a greater degree 
of control over the reversible porphyrinogen formation as 
compared to batch, and at-line [36] and inline analytical tools 
[37, 38] provide access to reaction monitoring even at very 
short times post-mixing.

Momo et al. reported the first continuous flow synthesis 
of porphyrin adapting the Gonsalves conditions [39] using 
propionic acid and nitrobenzene as solvent, carrying out the 
condensation and oxidation in a single coil. Optimization of 
the reaction led to a TPP yield of 31% at 140 °C with a resi-
dence time of 27 min. A range of aromatic aldehydes were 
investigated and yields of 9–39% were achieved [40]. The 
flow process is scalable, but not compatible with reactants 
or products that are sensitive to acids or elevated tempera-
ture; furthermore, the concurrent formation and oxidation 
to porphyrin limits opportunities to study and optimise each 
step of the process.

Here, we have adapted Lindsey porphyrin synthesis to flow 
to study the condensation and oxidation steps independently, 
aiming to maximize the yield of porphyrinogen and improve 
selectivity. We compared the synthesis of porphyrin via two 
flow processes: (1) a semi-continuous process, with conden-
sation of pyrrole and aldehyde in one reactor, oxidation of 
porphyrinogen in a second reactor, and neutralization of reac-
tion mixture in batch; (2) a fully continuous process where the 
neutralization step was moved into flow in a third reactor, and 
the flow pathway was augmented with real time monitoring 
by UV–Vis spectroscopy.

First, the semi-continuous formation of TPP was subjected 
to an initial optimization to screen residence time, concentra-
tion, equivalents of TFA, and temperature of the first step. 
Then, the fully continuous method was developed to include 
inline UV analysis, revealing that the neutralization step was 
contributing to reduced yields. With this corrected, the scope 
of the process was studied on both platforms using three alde-
hydes with sensitive functional groups (thio, ether and silyl 
alkyne). Here, discrepancies between the inline yield and 
isolated yield revealed that degradation was likely occurring 
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during purification, demonstrating the value of inline analysis 
and the fully continuous system. As such, we have developed 
a flow process that can be used to rapidly optimize porphyrin 
yield, and that has scope for further augmentation to enable 
kinetic monitoring and automated optimization.

Results and discussion

Semi‑continuous flow synthesis of porphyrin

The semi-continuous flow pathway was set up as described 
below (Fig. 1). Briefly, two reactors for condensation (reactor 
1) and oxidation (reactor 2) were set up in series; the reac-
tion mixture from reactor 2 was collected and quenched with 
triethylamine. For initial screening of parameters tetraphenyl 
porphyrin (TPP) was used as a model compound [41].

The effect of reactant concentration, residence time, acid 
equivalents, and the temperature of coil 1 on TPP yield was 
studied in an initial optimization (Table 1). Equivalents of 
pyrrole and benzaldehyde were maintained at 1:1 and reac-
tion temperature for the oxidation step was fixed at 50 °C 
[21]. A detailed description of reaction parameters and reac-
tor setup is in section S1.2 of SI.

A decrease in porphyrin yield was observed with increase 
in concentration from 0.018 M to 0.025 M (Table 1, entries 
1, 2, and 3, 38–23%), in line with observations that high 
dilution conditions minimize the polymerization of pyr-
role under batch conditions [21]. Increasing residence time 
(entries 2, 4, 5; 27–33%) and reaction temperature (entries 
2, 6; 31–35%) led to small improvements in the porphyrin 
yield. However, further increasing the temperature to 50 °C 
had a negative effect on the yield of porphyrin (entry 7; 
24%). The optimum concentration of TFA was found to be 

Scheme 1   Steps involved in the 
synthesis of porphyrin; possible 
side-products include polypyr-
role and protonated porphyrin, 
indicated with blue and pink 
respectively

Fig. 1   Semi-continuous reaction 
pathway for porphyrin synthesis 
and batch neutralization
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2.5 equivalents (Table 1, entries 2,8 and 9; 31–42%), giving 
a maximum porphyrin yield of 42%.

In these experiments, yields ranging between 23–42% 
were observed. However, during purification, a green col-
our was observed on the silica plug, indicating the pres-
ence of protonated porphyrin, and suggesting that the yield 
of porphyrin could be increased if the neutralization step 
was improved. Indeed, the global optimum of the reaction 
may be outside the parameters studied; here, a full design of 
experiments (DoE) approach would be informative [42–44]. 
However, to achieve robust DoE, the above set-up requires 
inline analysis and better control over the final neutralization 
step. Thus, the flow pathway was modified to include flow 
neutralization, and to integrate inline UV–Vis spectroscopy 
for real time monitoring of the reaction mixture.

Continuous synthesis and neutralization 
of porphyrin, incorporating real time monitoring 
of reaction mixture using inline UV–Vis 
spectrometer

The reactor set up was therefore modified to neutralize the 
reaction mixture in a third reactor, and to include inline 
UV–Vis (Fig. 2). The detailed reactor set up is described 
in S1.3 of the SI.

Porphyrins are highly conjugated π-electron systems 
with characteristic absorption bands in the near-ultraviolet 
and visible regions. The transition from the ground state to 
the second excited state results in an intense Soret, or B, 
band in the region of 380–500 nm; the transition of elec-
tron from ground to first excited state results in a weaker Q 

Table 1   Optimization reactions of TPP under continuous flow using TFA

Entry

Reagent 

Concentration 

(M)

Residence 

Time 

(mins)

Reactor 1 

T (°C)

Equivalents

of TFA

Yield

(%)

1 0.018 20 25 2 38

2 0.02 20 25 2 31

3 0.025 20 25 2 23

4 0.02 17 25 2 27

5 0.02 25 25 2 33

6 0.02 20 35 2 35

7 0.02 20 50 2 24

8 0.02 20 25 2.25 38

9 0.02 20 25 2.5 42

*Reactor 2: Temperature 50 °C

Fig. 2   Reactor design for con-
tinuous synthesis of porphyrin 
with real time UV–Vis analysis
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band in the region of 500–750 nm [45]. Inline UV–Vis is 
thus an ideal diagnostic tool for porphyrin yield. The Soret 
band is affected by concentration: TPP at higher concentra-
tion (370–180 µg/mL) had an intense peak at 399/400 nm, 
whereas diluting the solution (90–9 µg/mL) shifted the 
intense peak to 417 with a shoulder at 399 (SI 1.5) [46].

First, TPP was formed using the most promising condi-
tions from Table 1: 0.02 M pyrrole and benzaldehyde, 2.5 
equivalent of TFA, 20 min residence time, 25 °C tempera-
ture in reactor 1, 10 min residence time, 50 °C temperature 
in reactor 2, and neutralization in reactor 3 at 30 °C with 
3.3 min residence time. The UV spectrum of the inline neu-
tralized reaction stream at outlet showed peaks at 418 nm, 
438 nm and 482 nm (Fig. 3a). The peaks at 418 nm and 
438 nm correspond to porphyrin and protonated porphyrin 
respectively, as confirmed via reference to standards carried 
out in the same flow cell (Fig. 3b). The peak observed at 
482 nm corresponds to porphyrinogen; the reference spec-
trum collected at the outlet of reactor 1 is shown in Fig. 3c.

The presence of all three species in the reaction mixture 
collected at the end of reactor 3 (Fig. 3a) demonstrated that 
protonation of the porphyrin due to incomplete neutraliza-
tion of the reaction was reducing the overall yield. The 
major peak observed was 438 nm, indicating that residual 
acid was protonating the porphyrin. The presence of a peak 
at 482 nm, corresponding to porphyrinogen, also indicated 

incomplete oxidation of porphyrinogen to porphyrin under 
these conditions.

It is thus important to optimize the concentration of 
base required to completely neutralize the residual acid 
and increase the yield of porphyrin. Thus, the concentra-
tion of base was varied from 0.9 µL/mL to 100 µL/mL, 
with all other reaction parameters kept as specified above; 
briefly, 0.02 M pyrrole and benzaldehyde, 2.5 equivalent of 
TFA, 20 min residence time, 25 °C temperature in reactor 1, 
10 min residence time, 50 °C temperature in reactor 2, and 
neutralization in reactor 3 at 30 °C with 3.3 min residence 
time. The spectrum reported in Fig. 3d is the result at 100 
µL/mL and shows the disappearance of protonated porphy-
rin peak. In this case, porphyrinogen was not observed.

The possibility of the presence of other species was 
considered. Chloranil and its complex with triethylamine 
display peaks in the UV at 295 nm and 319 nm respec-
tively (S1.6), which is sufficiently distant from the peak at 
418 nm for porphyrin quantification.

Comparison of two processes for the synthesis 
of functionalized porphyrins

To verify the improvements of the fully continu-
ous process, functionalized porphyrins with thio 
(5,10,15,20-tetrakis(4-(methylthio)phenyl)porphyrin), ether 

Fig. 3   a UV–Vis spectrum 
of reaction under conditions 
described above and with solu-
tion collected after neutraliza-
tion with 0.9 µL/mL base b 
Reference UV–Vis spectra of 
porphyrin and protonated por-
phyrin; c UV–Vis spectrum of 
porphyrinogen as collected after 
reactor 1; d UV–Vis spectrum 
of reaction mixture after com-
plete inline neutralization with 
100 µL/mL
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(5,10,15,20-tetrakis(4-(decyloxy)phenyl)porphyrin), and 
alkynyl silyl (5,10,15,20-tetrakis(4-(trimethylsilyl)ethynyl)
phenyl)porphyrin) functional groups were trialled in both the 
semi-continuous and continuous set-up. Calibration curves 
(S1.4) were carried out for each substrate to use inline UV 
detection to establish analytical yields for the fully continu-
ous process. For the semi-continuous process yields were 
obtained via isolation and weighing of the porphyrin post-
purification, and thus are subject to losses during work-up 
and purification.

In the case of TPP (benzaldehyde; Table 2, entry 1) the 
yields obtained from both processes were comparable. 
However, thio (Table 2, entry 2), ether (Table 2, entry 3), 
and alkynyl silyl (Table 2, entry 4) functionalities showed 
substantial difference in the yields obtained from two differ-
ent processes. The isolated yields obtained during the batch 
neutralization in semi-continuous mode were found to be 
much lower compared to the analytical yields obtained from 
the fully continuous synthesis, except for the ether substi-
tuted porphyrin with 2 equivalents of acid used. This can be 
attributed to the instability of the porphyrins appended with 
thio, ether, and alkynyl silyl functional groups, incomplete 
neutralization of porphyrin, and/or yield losses during silica 
plug purification.

In the case of the fully continuous synthesis, higher 
equivalents of acid resulted in higher yield for three of the 
porphyrins, except for the thio-substituted porphyrin. On 
the contrary, yields obtained in the semi-continuous process 
were higher with lower equivalents of acid. We hypothe-
size that the presence of higher concentrations of acid may 

degrade less stable porphyrin derivatives, especially if insuf-
ficient base is used for neutralization. Here, inline purifica-
tion methods would be beneficial to achieve high yields of 
porphyrin compounds appended with sensitive functional 
groups, especially coupled with automated optimization 
approaches to efficiently identify optimal quantities of base.

Conclusion

We have developed two processes, semi-continuous and 
continuous, for the synthesis of meso-porphyrin derivatives 
via the Lindsay method. Continuous flow synthesis with 
inline UV–Vis analysis offers the advantage of real time 
monitoring of the reaction steady state, the reaction mix-
ture, and the porphyrin yield, giving better understanding 
of the process including where yield losses are occurring. 
In case of TPP, similar yields were obtained from both the 
semi-continuous and continuous process. However, in case 
of functionalized porphyrins with thio, ether, and alkynyl 
silyl groups, the analytical yields from continuous mode 
with inline UV were higher than the isolated yields from 
semi-continuous mode, which employed batch neutraliza-
tion. The lower yields observed in the semi-continuous 
process may be due to the degradation of the less stable 
porphyrin derivatives under incomplete neutralization con-
ditions, or losses during work-up and purification. Hence, 
inline UV analysis proved to be essential to improve the 
process by actual determination of steady state, optimising 
the base for complete neutralization of acid, and indicating 

Table 2   Comparison of two different processes for the synthesis of functionalized porphyrin

Substrate scope

% isolated yield (semi-
continuous process)a

% analytical yield (fully 
continuous process)b

TFA (equivalents)
(2.0) (2.5) (2.0) (2.5)

31 42 35 43

19 11 32 29

18 15 21 29

21 19 30 45

a) Yields are calculated after silica plug purification.
b) Yields are calculated by UV-Vis spectroscopy employing the external calibration curve for functionalized porphyrin as reported in SI, S1.4
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what the achievable yields are immediately following oxida-
tion. In future, this system will be augmented with in-line 
purification and modified to allow autonomous optimiza-
tion, allowing the rapid exploration of process space for a 
range of porphyrin precursors, ultimately improving selec-
tivity, yield, and scalability of these important molecules.
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