

# FlowSyn<sup>™</sup> Application Note 17: Newman Kwart Rearrangement



### Introduction:

The Newman-Kwart rearrangement is a useful method for converting Ar-O to Ar-S bonds that can be further derivatised following basic hydrolysis of the S-thiocarbamate 2. The reaction rate, and therefore necessary reaction temperature is determined by the electronic demand on the aromatic ring, but is typically in the range requiring the use of microwave heating. As such, the reaction can be inconvenient to scale up.

However, the reaction works equally well in a conventionally heated continuous flow reactor (Graph1). Now, the reaction can be readily scaled simply by running the reactor for longer. Moreover, the higher pressure capability of the FlowSyn permits:

- the use of solvents such as MeCN rather than NMP that can subsequently be easily evaporated to isolate the product (Graph 2) and
- gives a pale yellow oil as opposed to the black product obtained using NMP under identical conditions.



Graph 1: Contrasting a batch microwave with FlowSyn



Graph 2: Contrasting the use of NMP and MeCN as solvent



Figure 1: Contrasting NKR performed in MeCN (left) versus NMP (right).





The photographs (Fig. 1) show the collected product samples obtained using FlowSyn fitted with the 'optimise' automation option to produce the temperature dependence studies shown in Graph 2. The samples obtained using acetonitrile are shown on the left, and NMP on the right. The solvent has been removed from the acetonitrile samples and clearly shows how the crystalline starting material is progressively converted to the product – a yellow oil - with increasing temperature (left to right).

#### Method:

System solvent:Acetonitrile.Stock solution A:10 wt% 1 in acetonitrile (10.0g in 100 ml; 0.44M).

- A fixed back-pressure regulator was fitted (750 psi).
- FlowSyn was fitted with a 20ml Stainless Steel coil reactor.
- The output from the coil reactor was passed through the heat exchanger (set to 45°C) on the back of the column module before connecting to the BPR.
- Flow channel B was not used (set Vol B to 0.00ml in Auto Set Up), and was disconnected at the 'T'-mixer and plugged.



#### 1. Scale-up Experiment:

The reagent inlet line 'A' was manually primed up to Selection Valve 'A' with Stock Solution A, and then solvent inlet line 'A' and the flow system was primed with acetonitrile.

The System Configuration Page was programmed as follows:

| System Configuration |            |                   |            |  |
|----------------------|------------|-------------------|------------|--|
| Reactor 1            |            | Reactor 2         |            |  |
| Туре:                | Coil       | Туре:             | None       |  |
| Material:            | Steel      | Material:         |            |  |
| Volume:              | 20.0 ml    | Volume:           |            |  |
| Max Temp:            | 260°C      | Max Temp:         |            |  |
| System Dead Volume:  | 0.60 ml    | Heat Exchanger:   | Yes        |  |
| Minimum Pressure:    | 0 psi      | Pump Start Delay: | 10 s       |  |
| Maximum Pressure:    | 1000 psi   | Pressure Units:   | psi        |  |
| Pressure Threshold:  | Off        |                   |            |  |
| Wash Flow Rate:      | 2.0 ml/min | Equil. Flow Rate: | 2.0 ml/min |  |



The Experiment Set Up Page was programmed as follows:

| Auto Set Up  |         |                        |             |
|--------------|---------|------------------------|-------------|
|              | D. ul   |                        | 00.10.00    |
| Inlet A:     | Bottle  | Coll Residence Time:   | 00:10:00    |
| Inlet B:     | Bottle  | Column Residence Time: | 00:00:00    |
| Volume A:    | 100 mL  | Total Flow Rate:       | 2.00 mL/min |
| Volume B:    | 0.00 ml | Pre Collect:           | 4.0 ml      |
| A:B Ratio:   | N/A     | Post Collect:          | 8.0 ml      |
| Coil Temp:   | 200C    | Final Wash:            | 10.0 ml     |
| Column Temp: | 45C     | Intermediate Wash:     | 0.0 ml      |
|              |         |                        |             |

Total Reaction Time: 01:09:31

After running the experiment the collected product solution was evaporated *in vacuo* to afford the S-thiocarbamate 2 as a pale yellow oil (9.70g; 97%).

LC-MS: Rt = xxmin (Rt(s/m) = yyy); 100% purity (220-300nm(

NMR (CDCl3):

IR (



#### 2. Optimisation Experiment:

- FlowSyn was fitted with a Gilson 203B fraction collector (Automation upgrade required) fitted with an 'Optimisation' sample rack.
- Stock reagent solutions and System Solvent were either NMP or acetonitrile.
- FlowSyn was fitted with a 5.0ml stainless stell coil reactor.

The optimisation/profiling experiments were performed by programming the FlowSyn as follows:

| System Configuration |            |                   |            |  |
|----------------------|------------|-------------------|------------|--|
| Reactor 1            |            | Reactor 2         |            |  |
| Туре:                | Coil       | Туре:             | None       |  |
| Material:            | Steel      | Material:         |            |  |
| Volume:              | 5.0 ml     | Volume:           |            |  |
| Max Temp:            | 260°C      | Max Temp:         |            |  |
|                      |            |                   |            |  |
| System Dead Volume:  | 0.60 ml    | Heat Exchanger:   | Yes        |  |
| Minimum Pressure:    | 0 psi      | Pump Start Delay: | 10 s       |  |
| Maximum Pressure:    | 1000 psi   | Pressure Units:   | psi        |  |
| Pressure Threshold:  | Off        |                   |            |  |
| Wash Flow Rate:      | 1.0 ml/min | Equil. Flow Rate: | 0.5 ml/min |  |
|                      |            |                   |            |  |

| Auto Set Up    |          |                        |             |
|----------------|----------|------------------------|-------------|
|                |          |                        |             |
| Inlet A:       | Bottle   | Coil Residence Time:   | 00:10:00    |
| Inlet B:       | Bottle   | Column Residence Time: | 00:00:00    |
| Volume A:      | 5.00 ml  | Total Flow Rate:       | 0.50 ml/min |
| Volume B:      | 0.00 ml  | Pre Collect:           | 1.00 ml     |
| A:B Ratio:     | N/A      | Post Collect:          | 2.50 ml     |
| Coil Temp:     | 200C     | Final Wash:            | 2.00 ml     |
| Column Temp:   | 45C      | Intermediate Wash:     | 0.0 ml      |
|                |          |                        |             |
| Fraction Rack: | Optimise | Wait Time:             | 4.0 ml      |
|                |          | Aliquot Size:          | 0.03 ml     |



| Multiple Experiment Table |               |               |       |                      |                      |                  |                       |
|---------------------------|---------------|---------------|-------|----------------------|----------------------|------------------|-----------------------|
| Expt                      | Vol A<br>(ml) | Vol B<br>(ml) | Ratio | Coil<br>Temp<br>(°C) | Col.<br>Temp<br>(°C) | Coil Res<br>Time | Flow Rate<br>(ml/min) |
| 1                         | 2.5           | 2.5           | 1:1   | 140                  | 45                   | 00:10:00         | 0.50                  |
| 2                         | 2.5           | 2.5           | 1:1   | 150                  | 45                   | 00:10:00         | 0.50                  |
| 3                         | 2.5           | 2.5           | 1:1   | 160                  | 45                   | 00:10:00         | 0.50                  |
| 4                         | 2.5           | 2.5           | 1:1   | 170                  | 45                   | 00:10:00         | 0.50                  |
| 5                         | 2.5           | 2.5           | 1:1   | 180                  | 45                   | 00:10:00         | 0.50                  |
| 6                         | 2.5           | 2.5           | 1:1   | 190                  | 45                   | 00:10:00         | 0.50                  |
| 7                         | 2.5           | 2.5           | 1:1   | 200                  | 45                   | 00:10:00         | 0.50                  |



## **Further information:**

Please visit <u>https://www.asynt.com/product/flowsyn-continuous-flow-reactor/</u> for further information on the FlowSyn continuous flow reactor used for this paper.

To find out more about our complete range of flow chemistry solutions, please visit: <u>https://www.asynt.com/products/flow-chemistry/</u>

