

FlowSyn[™] Application Note 15: Bohlmann-Rahtz Pyridine Synthesis^{1,2}

Mark C. Bagley,* Vincenzo Fusillo, M. Caterina Lubinu. School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, UK

Method:

System solvent:	EtOH-AcOH (5:1)
Stock solution A:	1-Phenyl-2-propyn-1-one 1 ³ (0.16 g, 1.23 mmol), ethyl 3-aminocrotonate 2
	(0.2 mL, 1.6 mmol) in EtOH–AcOH (5:1) (12 mL).
Stock solution B:	Empty.

FlowSyn was fitted with a 250 psi BPR.

a. Flow Reaction using FlowSyn[™] 'Automated Experiment' Interface

- 1.FlowSyn[™] was fitted with a 5 mL stainless steel (SS) tubing reactor, and the heating unit was tensioned to ensure optimal thermal contact.
- 2. The outflow from the collection valve was directed into a collection bottle containing a stirred solution of saturated aqueous $NaHCO_3$.
- 3. The selection valves were set to 'Reagent' and the reagent lines were primed.
- 4. The selection valves were set to 'Solvent' and the system was primed to remove all air bubbles.
- 5. The following flow parameters were entered into 'Setup Experiment'.

Reactors:	Coil	Reaction time:	5.00 min
Coil type:	Steel 5.0 mL	Total Flow Rate:	1 mL/min
Coil Temp:	120 °C	Volume A:	12 mL
Col. Temp:	0 °C	Volume B:	0 mL
Inlet A:	Bottle	A:B Ratio:	12:inf
Inlet B:	Bottle	Post Collect:	10 mL
Pre Collect:	2.0 mL	Wash:	5.0 mL
Total FlowSyn [™] opera	ation time = 38 min		

6.By selecting 'Run Experiment', the FlowSyn[™] equilibrated to the set temperature and then ran

the flow reaction, before cleaning the system by flushing with system solvent ('Post Wash'). 7.The collected outflow was extracted with CH₂Cl₂. The organic extracts were combined, dried (MgSO₄) and evaporated *in vacuo* to give **3** (0.25 g, 86%) as a yellow solid, mp 44–45 °C (Lit.² mp 44 °C).

b. Batch Reaction using Microwave Irradiation⁴ in a CEM Discover[®]

A solution of 1-phenyl-2-propyn-1-one $\mathbf{1}^3$ (40 mg, 0.31 mmol), ethyl 3-aminocrotonate $\mathbf{2}$ (52 mg, 0.40 mmol) in EtOH–AcOH (5:1) (3 mL) was irradiated for 5 min at 120 °C in a CEM Discover[®] microwave synthesizer at an initial power of 90 W (which was moderated to maintain constant temperature, as determined by the in-built IR sensor). The solution was allowed to cool in a stream of compressed air, evaporated *in vacuo* and partitioned between a saturated aqueous solution of NaHCO₃ (25 mL) and EtOAc (25 mL). The aqueous layer was further extracted with EtOAc (2 x 15 mL) and the organic extracts were combined, washed with brine (15 mL), dried (Na₂SO₄) and evaporated *in vacuo* to give the crude product. Purification by column chromatography on silica, eluting with light petroleum–ethyl acetate (4:1), gave **3** (64 mg, 86%) as a pale yellow solid, with identical physical and spectroscopic properties.³

c. Flow Reaction using Microwave Irradiation⁵ in a CEM Discover[®]

A solution of 1-phenyl-2-propyn-1-one $\mathbf{1}^3$ (40 mg, 0.31 mmol), ethyl 3-aminocrotonate $\mathbf{2}$ (52 mg, 0.40 mmol) in EtOH–AcOH (5:1) (3 mL) was irradiated at 120 °C in a pressure rated glass tube (10 mL) at a flow rate of 0.6 mL min⁻¹ in a CEM Discover[®] microwave synthesizer pre-charged at an initial power of 120 W (which was moderated to maintain constant temperature, as determined by the in-built IR sensor). The flow cell was cleaned by washing with further batches of EtOH–AcOH (5:1) and the collected outflow was poured immediately into a stirred solution of saturated aqueous NaHCO₃ and extracted with CH₂Cl₂ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and evaporated *in vacuo* to give the crude product. Purification by column chromatography on silica, eluting with light petroleum–ethyl acetate (4:1), gave **3** (56 mg, 76%) as a pale yellow solid, with identical physical and spectroscopic properties.³

Conclusions:

Use of the FlowSyn[™] faithfully reproduced the outcome of a batch reactor or flow reactor with continuous processing using microwave dielectric heating, offering an alternative means to scale up these microwave-assisted procedures for the Bohlmann-Rahtz pyridine synthesis.

Supplementary Information:

Ethyl 2-methyl-6-phenylpyridine-3-carboxylate 3^{2,3}

HRMS: Found MH⁺, 242.1176. C₁₅H₁₆NO₂ [MH⁺] requires 242.1176.

¹H NMR (CDCl₃, 400 MHz): δ_{H} 8.20 (1H, d, J 8.2), 7.98 (2H, m), 7.56 (1H, d, J 8.2), 7.39 (3H), 4.32 (2H, q, J 7.1), 2.85 (3H, s), 1.35 (3H, t, J 7.1).

¹³C NMR (CDCl₃, 100 MHz): $δ_{C}$ 167.0 (C), 160.3 (C), 159.4 (C), 139.8 (CH), 139.0 (C), 130.1 (CH), 129.2 (CH), 127.8 (CH), 124.1 (C), 117.9 (CH), 61.6 (CH₂), 25.6 (CH₃), 14.7 (CH₃).

IR (nujol) 1717, 1581, 1277, 1090, 1022.

MS (EI): *m/z* (rel. intensity) 241 (90, M⁻⁺), 213 (50), 196 (100), 168 (65), 141 (35), 115 (25), 77 (8).

References

- 1. For an account of the Bohlmann-Rahtz reaction, see *The Bohlmann–Rahtz pyridine synthesis: from discovery to applications*, Bagley, M. C.; Glover, C.; Merritt, E. A. *Synlett* **2007**, 2459.
- 2. Bohlmann, F.; Rahtz, D. Chem. Ber. **1957**, 90, 2265.
- 3. Bagley, M. C.; Brace, C.; Dale, J. W.; Ohnesorge, M.; Phillips, N. G.; Xiong, X.; Bower, J. J. Chem. Soc., Perkin Trans. 1 2002, 1663.
- 4. For the use of a microwave irradiation to promote the Bohlmann-Rahtz reaction, see *A new one-step synthesis of pyridines under microwave-assisted conditions*, Bagley, M. C.; Lunn, R.; Xiong, X. *Tetrahedron Lett.* **2002**, *43*, 8331
- 5. For the use of a microwave flow reactor in the Bohlmann-Rahtz reaction, and for details of the apparatus set up, see Bagley, M. C.; Jenkins, R. L.; Lubinu, M. C.; Mason, C.; Wood, R. *J. Org. Chem.* **2005**, *70*, 7003